The Final Report for A Blockchain Explorer

MSBD6000D Group Project, 2020 Spring, HKUST

YANG Rongfeng
20644943
ryangag@connect.ust.hk

Abstract

As Bitcoin and other cryptocurrencies have
been picking up steam, focus has been
turned to blockchain — the underlying dis-
tributed ledger technology (DLT) that em-
powers these digital currencies. In this pa-
per, we aim to build a decentralized applica-
tion - a blockchain explorer that connects the
Blockchain File System (BFS) and Blockchain
File Coin (BFC) provided by the course. It of-
fers a user-friendly front-end page to support
various fundamental functions in the process
of digital currency transaction.

Key Words: Blockchain, Explorer, BFS,
BFC

1 Introduction

1.1 Background

A blockchain,[1][2][3] is a growing list of records,
called blocks, that are linked using cryptography.
Each block contains a cryptographic hash of the
previous block,[4] a timestamp, and transaction
data (generally represented as a Merkle tree).

A blockchain is a decentralized, distributed,
and oftentimes public, digital ledger that is used
to record transactions across many computers so
that any involved record cannot be altered retroac-
tively, without the alteration of all subsequent
blocks.[1][5] This allows the participants to ver-
ify and audit transactions independently and rel-
atively inexpensively.[6] A blockchain database,
namely Blockchain File System, is managed au-
tonomously using a peer-to-peer network and a
distributed timestamping server. They are authen-
ticated by mass collaboration powered by collec-
tive self-interests.[7] Such a design facilitates ro-
bust workflow where participants’ uncertainty re-
garding data security is marginal.

Blochain File Coin(BFC) is a kind of cryptocur-
rency and digital payment system intended to be a

LI Yunli
20659584
y1lijd@connect.ust.hk

blockchain-based cooperative digital storage and
data retrieval method. Miners can elect to provide
storage capacity for the network, and thereby earn
units of the Filecoin cryptocurrency (FIL) by peri-
odically producing cryptographic proofs that cer-
tify that they are providing the capacity specified.

Application Layer

‘Tokenized Assel

‘ Cryptocurrency ‘Trading Markets

Virual State

Distributed Virtual Machine | Machine Layer

Distributed Service
Distributed I

Smart Contract (e.g., Docker in Hyper-
Ledger [36] and Ethereum Virtual Machine [37])

Consensus Protocol

Byzantine Faull-tolerant Replication Proof of Concept Protocol
tocol al

Incentive Mechanisms
(@.¢.. Block Mining
3 ns)

(e.g., Proof of Work |25] -~ @.g., Bl
and Proof of Stake [35]) and Side

Protocols (e.g.,
BFT [18] and Ripple [34])

Data and Network

odge

Storage of L
eplica (Local Database)

Feed-in

of New
Transactions

ion
< R
Proof [11). (12]

Figure 1: Blockchain

Stacks[9]

Network Implementation

From Figuresection 1.1 we can see the whole
blockchain network stack. There are four layers in
this network. And the application layer, i.e. user
interface, is the bridge that connects the user and
the blockchain. Additionally, in the virtual state
machine layer, smart contracts are computer pro-
tocols intended to digitally facilitate, verify, or en-
force the negotiation or performance of a contract.
Smart contracts allow the performance of credible
transactions without third parties. These transac-
tions are trackable and irreversible.

1.2 Project Description

Our team proposes to build a useful front-end ex-
plorer, a decentralized web tool that provides de-
tailed information about blocks, addresses, and
transactions, and supports basic query operations,
including searching for the transaction ID (#xid),
account, and smart contract address (ctAddress).

The article is organized as follows: we firstly
introduce the background of project and describe
the project goal under individual contributions of
each group member (§1). Then at the (§2), we
discuss the related work to our project. Further-
more, we describe our application architecture in
(8§3) and their corresponding functionalities. Ad-
ditionally, we will show the layout of our explorer
in (§4), and reveal detailed experimental process
- how to utilize this useful web tool to fulfill the
users needs.

1.3 Contribution

YANG Rongfeng: Project managing, frame-
work building, coding, report.

LI Yunli: Web interface improving, coding,
presentation, report.

2 Related Work

There are several ecosystems in this blockchain
network: [10]

e BOS (Blockchain Operating System): a mini
operating system for digital assets manage-
ment.

e BFS (Blockchain File System): a decen-
tralized cloud storage system that reduces
cost and boosts efficiency by crowd-sourcing
resources with the underlying distributed
ledger.

e BFC (Blockchain File Coin): the underlying
distributed ledger powering BFS. BFC dis-
tributes rewards to and charges fees from dif-
ferent BFS stakeholders.

e BDC (Blockchain Distributed Computing): a
decentralized platform for buying and selling
computation power. Task organizer can ac-
quire computing power for general tasks at
the cost of BDC.

e BCA(Blockchain Certificate Authority): A
decentralized platform for certificate issuing
and identification. Official records can be
shared and verified for a lifetime.

Since we aim to link the BFS and BFC, short in-
troductions will be given concerning the two sys-
tems.

2.1 Blockchain File System (BFS)

The traditional cloud storage method vastly used
nowadays are centralised services that access data
on distributed servers with load balancing algo-
rithms. It has various drawbacks:

e Expensive.

e Centralised bottlenecks.

Data transparent to service provider.

Incapable of permanent storage.

BES offers a better solution to cope with these
problems. It is a P2P decentralization network
with compressed sensing, where encrypted
data are distributed throughout the network
to increase reliability and avoid bottom necks
from centralization. What’s more, by leveraging
blockchain for authenticity and incentive, records
contracts of file storage sessions are difficult
to tamper with and rewards contributors will
be rewarded accordingly, which in turn, stimu-
lates the development and security of this network.

Network coded /ool pEEE

decentralized FHFH HHFH

storage = =
t]

Publicly accessible = =

3 o A

L RESTful APIs e 1 | O = l

Figure 2: Comparison between Cloud Storage and BFS

The system mainly consists of four parts:
1. Client

2. Operation Nodes, such as Upload Node,
Download Node, Search Node, and Annota-
tion Node

3. Retrieval Node, Proxy Node (Optional)
4. File Node

This is an encryption system, where all files
stored on it must be cryptographically protected
when uploaded. A client firstly accesses the sys-
tem, choosing the operation nodes as they want.
The chosen node will then sent the request to the
retrieval node (there might be a proxy node prior
to the retrieval node), and the rn node will then
operate in the corresponding file node.

sees semd
e
= =0

%Em
-

Figure 3: BFS Architecture

2.1.1 API

We implement two APIs of BFS in our website:
uploading files and downloading files. A friendly
interface was built to guide users to upload and
download their contract and data.

Uploading Contract and Data

Type post

Storage file copies number
Days days the files store
Field storage field

File the path of file

Table 1: File Upload API

Upload contract.py, var.json, input.json or any
kinds of files such as videos, documents, music
and etc. If files are uploaded successfully, the afid
of the files will return.

Downloading Contract and Data

Type get
FileID the afid of file
FileName the name of file

Table 2: File Download API

Files can be download by providing the afid and
the name of files.

2.2 Blockchain File Coin (BFC)

Blockchain File Coin (BFC) is a decentralized
network-coded storage system. What makes it dif-
ferent from other storage system lies in its features
of dynamic storage and credential levels for differ-
ent services and needs. The credentiality requires
on-chain deposit, with Delegated Proof of Stake
(DPoS) consensus algorithm to achieve dynamic

credential levels. It allows file search and sharing,
which is different from the traditional filecoin.

2.2.1 API

All the APIs of BFC can be categorized into five
parts: Query, Fetch, Apply, Sign and Submit.

Query

Type get
Query parameter value

Table 3: BFC Query API

Query APIs include account balance query, ac-
count statues query, contract query and transac-
tion execution status query. We design a search
bar to collect the necessary parameters (Transac-
tion ID, Account Address or Contract Address) to
complete query.

Fetch

Except for querying certain data, the blockchain
explorer also need to display the detailed informa-
tion of the blocks and accounts. Therefore, we
fetch data from the get blocks API and get
accounts API to display in the front end.

Apply

Type post

From your address

To receiver’s address

Amount the fee you want to transfer
Auxdata custom data to store
CarryFee reward for miner
FunctionName Need in contract-call TX
InputDataAFid Need in contract-call TX

Table 4: BFC Apply API

If user wants to make a transaction, applying a
TX is the first step of the whole process. There are
two kinds of TX, basic one and a contract-call one.
The first one is only transferring some coins from
A to B and another one will call a contract during
a transaction.

Sign

After applying a transfer transaction, an un-
signed TX will return. We deploy an executable
binary SignSDK in the Server to sign this TX, gen-
erate its signature and append behind.

Submit

The signed TX is been placed in the body of
POST request and the server will submit it to the
BFC.

Type post
Unsigned TX the raw data of unsigned TX
Signature generated by SignSDK

Table 5: BFC Submit API

3 Explorer Design

3.1 Explorer Architecture

The architecture of the explorer are shown as
Figuresection 3.1 below. We utilize HTML and
javascript to encode our front-end and PHP for
the back-end. The framework is based on JQuery
and Vue. JQuery is a JavaScript library de-
signed to simplify HTML DOM tree traversal
and manipulation, as well as event handling,
CSS animation, and Ajax. Vue.js is an open-
source Model-view—viewmodel JavaScript frame-
work for building user interfaces and single-page
applications. Combined the two, our web provides
a well-made layout and useful interfaces to serve
the users.

Framework

JavaSript

Server

Apache

Figure 4: Explorer Architecture

It is worth mentioning that we adopt Respon-
sive web design (RWD) approach to our explorer,
which makes our web pages render well on a va-
riety of devices and window or screen sizes. Con-
tent, design and performance are shown across all
devices to ensure usability and satisfaction. The
practice consists of a mix of flexible grids and lay-
outs, images and an intelligent use of CSS media
queries. As the user switches from their laptop
to iPad, the website should automatically switch
to accommodate for resolution, image size and
scripting abilities.

For example, figure 5 and figure 6 shown below
represent the responsive designs for iPhone X and
iPad Pro respectively. The information in different
devices are presented well-adjustedly.

iPhone X v 375 x 812 87% v

Transaction Info

Height: 526 Network: BFS/BFC

Supply: Address:

ATTRIBUTE

ID

INFO

8r9107+1QYJMhxM4DecuFG
2eClj8MqUUIPnnu+eZaxXA

ATTRIBUTE

Timestamp

INFO

2020-02-20 10:02:00

ATTRIBUTE

From

INFO

Figure 5: iPhone X Display

iPad Pro v 1024 x 1366 43% v

.
© S
s 5 Blockchain Inf o

Trensaction Info Hea 28 Networc BFSIBFC Supply

nnnnnnnn

83

1 TRIVZIYIZ)ZWFTFoZORX0ZIGNFVaXFFRUpUGKO1SW

Payioad TKOXIENIQUSHRSBUSEUGV0SSTEQ

Figure 6: iPad Pro Display

3.2 Explorer Webpages

The design of our explorer consists of three main
pages: 1) Blockchain Information 2) Accounts 3)
Transactions and Files. They are shown in the top
of our web as a fixed menu bar. Additionally, there
is a search box besides the menu, where users can
search for the transaction ID (txid), account, and
smart contract address (ctAddress).

We will elaborate each page, introducing their
layouts and functionalities sequentially.

3.2.1 Blockchain Information Page

This is the home of our web, where all the
transactions and blocks are shown. There is a
sub tool bar with two buttons: 1) Transactions 2)
Blocks. After clicking different buttons, different
information will render to users.

Transactions

If we click on the “Transaction” button, which is
also the default showing option, the following info
will be printed out on users’ screen:

Info Description

ID the hash of the transaction ID
Timestamp | transaction timestamp

Sender the public key of the sender
Recipient | the public key of the recipient
Amount transaction amount

Fee transaction fee

Height block height

Table 6: Transactions Page Info

Figure 7: Transactions Subpage

Besides the listing of transactions, users can
click on each transaction ID, which is a hyperlink,
and detailed info of the transaction will be shown
as below:

Info Description

ID the hash of the transaction ID

Timestamp transaction timestamp

From the sender

To the public key of the recipient

AccountNonce | account nonce

CarryFee the reward for the miner

Payload contract information

Signature the signature of transaction
Table 7: Transaction Attributes

Blocks

If we click on the “Blocks” button, the follow-
ing info will be printed out sequentially on users’
screen:

Info Description
BlockHash the hash of the block
Height block height
Timestamp block timestamp
TxNumber the number of TX
Generated by | the miner

Nonce nonce

Table 8: Blocks Page Info

mmmmmmmmmmmmmm

Figure 8:

Blocks Subpage

Besides the listing of blocks, users can click on
each BlockHash, which is also a hyperlink, and
detailed info of the block will be shown as the ta-

ble below:

Info Description
Hash the hash of the block
Version current chain version
Height block height
ParentBlockHash | hash of parent block
MinerAddr miner address
Size size of the block
Timestamp block timestamp
Nonce nonce
TxNumber the number of Tx
Afid afid of transactions in the block
Extra extra information
StateRoot world state
TxRoot root of txs in current block
ReceiptRoot root of receipts

Table 9: Block Attributes

3.2.2 Accounts

By selecting the ”Account” button in the menu, a
list of accounts in the network and their detailed
info will be shown on the screen. The info and
their descriptions are listed in table 10 below:

Info Description

the info sequence

ID the name of the account
Address the address of users
Balance account balance
AccountNonce | account nonce
StorageRoot storage root

CodeHash code hash

Table 10: Account Attributes

Figure 9: Account Page

3.2.3 Transactions And Files

The layout of this page is shown as figure 11 be-
low.

nnnnnnnnnnnnnn

A)

Figure 10: Transactions And Files Page

There are three subpages under Transactions
and File page, which support two kinds of transac-
tions as well as an extra function of file operation.
The two types of transaction are:

1. Basic transaction: users need to provide
their public and private key, together with the
addresses of payer and recipient.

From Address

From Account Address

Received Address

Receiver s Accoun t Address

Amount ($)

The fee you want to transfer to receiver

Auxdata

YYou can add some custome data, which will be store in blockchain

Public Key

Private Key

Carry Fee ($)

Reward for miner who blocks the tx

Figure 11: Basic Transaction

2. Transaction with smart contract: the API
for uploading contract and data is provided.
Users need to deploy their contract in Step
1. In this process, users need to utilize the
file upload function, which we will elaborate
shortly after, to upload their contract, and get
the contract address, ctAddress. After the de-
ployment of the contract, users can choose to
apply it during the transaction process.

Pubickey

Figure 12: Transaction with Smart Contract

Additionally, we support file uploading and
downloading in BFS, which is the necessary step
during the deployment of contracts. Users can
click on "Files” button and the corresponding page
with upload, download APIs will be shown as be-
low. Users can upload any files, getting file ad-
dresses for further operation. And they can also

and download them by searching the correspond-
ing file address.

Storage

{
“input.json": null

File Afid

Please input the afid of file you want to download

File Name

File name

Figure 13: File Subpage

4 Experiments and Results

4.1 Account Status Query

For the querying box besides the main menu, for
example, if a user wants to search for his or her
own account to check the balance, he or she can
type in their address in the box, and hit the search
button, the web will then, returns the status infor-
mation of the account as a small pop-up message
shown in figure 15. The background of the web-
page will be cast on shadow, which emphasizes the
pop-up message, where users can easily find the
information they need. The effect is shown in the
figure 15. We can see that the balance of the ac-
count we have searched is 500957, account nonce
is 4, with the return message, which states that this
query has been successfully executed.

After getting the info, the user can click any-
where outsides the message window, the web will
return to the normal state, waiting further requests
from users.

4.2 Transaction and Txid Query

Now let’s say I want to transfer 100 to my team-
mate for the basic transaction without a smart con-
tract. Under the basic transaction page, firstly, I
type in my address, my teammate ’s address, and

\/ 2 190AXNQCSA @ m
i
Account Status Info
¢ £S/BFC s
“code": 0, g
“datat {
"accountStatus™ {
"“AccountNonce": 4,
| "Balance": 500957, AccountNonce Sto
"StorageRoot": null " o

“"CodeHash": null

} MW

1
b 1
“"msg": "success"

1

:) MW

Figure 14: Address Query

the amount of value I want to transfer. After filling
out these info, I can add in some customized data
under the Auxdata box, which will also be store in
the blockchain. Additionally, my public and pri-
vate key are required for verification. And carry
fee is the reward for the miner. After I have done
all of these, click the Send button, and I get a mes-
sage from the server, stating that the transaction
has been successful and the txid will be printed
out together.

txid=8EPi6aAvUjDMo6r4kcU7Yi9VU3xoGaseRzbCT2UMFmes

resp={"code":0,"data":null,"msg":"submit tx success"}

Figure 15: Basic Transaction Return Message

Now I can use the £xid I got from the transaction
and perform query at the top. The query returns
the transaction info as shown in figure 17. The
transaction status, type, carry fee, block number
will be printed out to users. The same effect as the
account query.

\/ 1 e o |

Transaction Info
{
| s FsiBFC sur
“data" {
"receipt: {
"txStatus": true,
"txType": "transferTX",
resLog® { saction with smart contract. For the basic

i 1ake transaction with smart contract, w
"usedFee™ 10,

load fil . Y
1 verrorlnfo: ™ support to upload files to bfs. You can up
b

“indexInfo": {
"blockNumber": 550,
“txIndex": 1
}

}

h
"msg": "success"
}

Figure 16: Txid Query

4.3 Transaction with Smart Contract and
ctAddress Query

Let’s say I want to transfer another 100 to my
teammate, but this time, I want to apply my own
smart contract. There are two parts to finish this
process: 1) deployment of the contract and 2)
Application of the contract.

Deployment of the Contract
The steps to deploy contract are as follows:

1. Upload the contract in the Files subpage, get
the ctAddress of the contract.

2. Upload the var file, get the Afid of the var.
3. Upload the input file, get the Afid of the input.

4. Switch back to Contract subpage, fill out the
Address, Public Key, Private Key, Amount,
Carry fee, Contract Afid and Var Afid, press
the ”Send” button.

If the contract has been successfully deployed,
a piece of information should be appearing under
the ”Sent” button, in which transaction id (zxid)
and contract address (ctAddress) are returned to
users.

18KANACSIC108CDALGTESNCULYAGTGM

ppppppppp

xxxxxxxxx

canyteo (5)

Figure 17: Contract Deployment

Application of the Contract

In the Step 2, users need to fill out their Address,
Contract address (ctAddress), Public Key, Private
Key, Amount, Carry fee, Input data address (Afid)
inside the text-boxes. What’s more, users must

add the function they want to achieve in the con-
tract manually in the Function Name box. In this
demo, we use the function ”add” the demo con-
tract provides.

From the figure 18 we can see that the
server renders a fxid and a message to indicate
the transaction has been successful and completed.

mmmmmmmm

rrrrrrrrrrrrr

PPPPPPPPP

canyfes (5)

FFFFFFFF

uuuuuuuuuuu

Figure 18: Contract Application

Now we can use the transaction id we just got
and perform query by searching the crAddress.
The pop-up window shows the transaction info
just as the basic transaction info search, however,
the txType clearly shows that this is a transaction
with a smart contract.

pppppp

Figure 19: ctAddress Query

4.4 File Upload and Download

Just like any other file uploading process, users
press the red upload button in the bottom, choose
the file they want to upload to the server. Batch
upload is supported, which means that users can

choose multiple files at once. The storage needs
to be specified by choosing the number between 3
to 7. The Days should also be addressed, mean-
ing how many days the file will be perserved on
the server. Lastly, users have to fill out Field,
whose value is chosen from |afs|,|arfs|, and
lafs|arfs|.

After finshing filling out, click upload and the
server will then return the file’s address.

eabbf074a8251908Mb7834249da6e25"
}

Figure 20: Upload File

With the file name and address, users can fetch
the file and download it again by typing the File
Afid and the File Name inside the Download func-
tion.

File Afid

File Name

ctoy

Figure 21: Download File

5 Conclusion & Future Work

In conclusion, in this project, we have built a well-
designed explorer to present the information on
the blockchain, such as transaction info, block
info. Moreover, it provides several useful APIs for
users to perform query as well as file operations.
It fulfills the basic needs for most cases.

However, due to the time scope of the project,
there are some drawbacks we are aware of, yet
have not managed to fix. And we list them as our
future work:

1. Pagination display
In the home page, where transactions and
blocks are listed, there is only one widget
called ”Next” for users to browse. In the
early developing stage it should not be a
problem. However, as users and transactions
are adding up, this pagination display will
present as a big problem, impeding the user
experience greatly.

What’s more, such design slows down the
query process. Because after every operation,
the server will return all the blocks, which is
a considerable amount of data flow that slows
down the loading speed.

Therefore, in the future work, the pagination
display will be changed to an active and hov-
erable pagination, where all pages are listed
at the bottoms and users are able to jump to
any page as they want. Such a modification
greatly improve the user experience and in
the same time, improve the fluency of page
loading.

2. Addition of the storage structure
The query function is still primitive and lim-
ited. Powerful storage structures such as
MySQL database or Radius Cache can be
added into the server to support complex
queries.

3. Server architecture replacement

The server we use now is built on Apache,
an open-source HTTP server for modern op-
erating systems. It is one of the most popular
server ever in existence. But in the same time,
it’s also one of the oldest web servers, with
its first release all the way back in 1995. As
the blockchain network grows larger and ma-
turer, there will be numerous users access this
website every day or even every second. In
the situation of high concurrency and traffic,
Apache doesn’t perform well at scale. Thus,
a new server architecture called NGINX can
be considered as the next server architecture
to cope with the problems.

References

[1] ”Blockchains: The great chain of being sure about
things”
https://www.economist.com/news/
briefing/21677228-technology-

https://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
https://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

behind-bitcoin-lets-people-who-
do—not—know—or-trust—-each-other-
build-dependable

Morris, David Z. (15 May 2016). “Leaderless,
Blockchain-Based Venture Capital Fund Raises
$100 Million, And Counting”
http://fortune.com/2016/05/15/
leaderless—-blockchain-vc—fund/

Popper, Nathan (21 May 2016). ”A Venture Fund
With Plenty of Virtual Capital, but No Capitalist”
https://www.nytimes.com/2016/05/22/
business/dealbook/crypto—ether—
bitcoin-currency.html

Narayanan, Arvind; Bonneau, Joseph; Felten, Ed-
ward; Miller, Andrew; Goldfeder, Steven (2016).
Bitcoin and cryptocurrency technologies: a compre-
hensive introduction Princeton: Princeton Univer-
sity Press. ISBN 978-0-691-17169-2.

Armstrong, Stephen (7 November 2016). "Move
over Bitcoin, the blockchain is only just getting
started”
https://www.wired.co.uk/article/
unlock-the-blockchain

Catalini, Christian; Gans, Joshua S. (23 November
2016). ’Some Simple Economics of the Blockchain”
http://www.nber.org/papers/
w22952.pdf

Tapscott, Don; Tapscott, Alex (8 May 2016).
“Here’s Why Blockchains Will Change the World”
http://fortune.com/2016/05/08/why—
blockchains-will-change-the-world/

Bheemaiah, Kariappa (January 2015). "Block Chain
2.0: The Renaissance of Money”
https://www.wired.com/insights/
2015/01/block—-chain-2-0/

Wang and Hoang. A survey on consensus mech-
anisms and mining management in blockchain net-
works”

[10] “Intro-Blockchain-System-For-Project.pdf”

https://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
https://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
https://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
http://fortune.com/2016/05/15/leaderless-blockchain-vc-fund/
http://fortune.com/2016/05/15/leaderless-blockchain-vc-fund/
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.wired.co.uk/article/unlock-the-blockchain
https://www.wired.co.uk/article/unlock-the-blockchain
http://www.nber.org/papers/w22952.pdf
http://www.nber.org/papers/w22952.pdf
http://fortune.com/2016/05/08/why-blockchains-will-change-the-world/
http://fortune.com/2016/05/08/why-blockchains-will-change-the-world/
https://www.wired.com/insights/2015/01/block-chain-2-0/
https://www.wired.com/insights/2015/01/block-chain-2-0/

